

BULL Machines Exclusive Problem Starement

Title:

Simulation of Electronic Control Piston Pump using MATLAB/Simulink.

Domain:

Mechatronics / Control Systems / MATLAB Simulation.

Challenge:

Design and simulate a control system for an electronic control piston pump used in off-highway equipment. The task is to:

- 1. Develop a control logic to regulate pump displacement and pressure through an electronic controller.
- 2. Simulate the dynamic response of the pump in MATLAB/Simulink, including parameters like:
 - a. Flow vs. speed/load
 - b. Pressure build-up vs. demand
 - c. Controller response time and stability
- 3. Demonstrate how control strategy affects overall pump efficiency and system stability.

Objective:

Create a virtual test bench (digital mimic of real-time pump behaviour in MATLAB/Simulink, which can be used to evaluate and optimize control strategies before hardware implementation.

Expected Outcome:

- Functional simulation model of the pump + control system.
- Performance plots (flow vs. time, pressure vs. demand, efficiency curves).
- Comparative study of different control logics

Note: The final controller logic will be shared during HACKATHON.

Hardware Hackathon Themes:

Agriculture & Rural Development

- AGR-01: Smart Irrigation Pump Controller Solar-powered pump with soilmoisture based auto ON/OFF.
- AGR-02: Low-Cost Grain Moisture Analyzer Portable device for farmers to check grain moisture content before storage.
- AGR-03: Livestock Wearable Tracker GPS + health sensor collar for realtime cattle monitoring.
- AGR-04: Automated Seed Dispenser Handheld or tractor-mounted seeder ensuring uniform distribution.

Healthcare & MedTech

- MED-01: Portable ECG & Vitals Monitor Battery-powered device for remote health centers.
- MED-02: Al-Enabled Low-Cost Eye Screening Device Hardware for rural eye camps detecting cataracts.
- MED-03: Wearable Posture Correction Belt Sensor-driven belt giving haptic feedback to improve spinal posture.
- MED-04: Neonatal Temperature Incubator Low-cost, solar-assisted incubator for rural healthcare.

Disaster Management & Safety

- DM-01: Smart Flood Level Alert Pole IoT pole with ultrasonic sensors to measure rising water levels.
- DM-02: Earthquake Early Vibration Detector Low-power sensor box that triggers alarms in seismic activity.
- DM-03: Fire Escape Smoke Guidance Lights Intelligent floor lights that guide evacuation paths during fire.
- DM-04: Emergency Power Cube Compact, solar+hand-crank powered generator for disaster relief.

Clean & Green Technology

- CGT-01: IoT Air Pollution Monitor Portable sensor station for tracking PM2.5,
 CO₂, NO₂ levels.
- CGT-02: Smart Biogas Digester Household digester with gas flow sensors and safety shutoff valve.
- CGT-03: Solar-Powered Smart Street Light With motion sensor, dimming, and self-cleaning solar panel.
- CGT-04: Smart E-Waste Shredder Small-scale machine for shredding and categorizing circuit boards.

Smart Education & Accessibility

- EDU-01: Interactive Braille Learning Device Tactile hardware for visually impaired students.
- EDU-02: Low-Cost Digital Classroom Response System Wireless clickers for quizzes and attendance.
- EDU-03: Portable Science Lab Kit Modular hardware box with sensors for physics/chemistry experiments.
- EDU-04: Al-Assisted Sign Language Glove Wearable translating gestures into audio/text in real time.

Software Hackathon Themes :

On - spot problem statements will be given for the participants.

General Rules:

- Bring your own laptops, chargers, and other accessories.
- Internet access to a maximum of 2 Devices will be provided.
- Power source will be provided.
- Your college ID, our event ID, and T-shirt must be worn.
- Cross-team collaboration prohibited.
- Misconduct, plagiarism, or cheating can lead to disqualification.

Hardware Hackathon Guidelines:

Event Format & Process

- Duration: 24 hours of continuous development.
- Evaluation Criteria:
 - Creativity & Innovation
 - Technical Execution & Functionality
 - Feasibility of the Solution
 - Presentation & Demonstration
- Number of evaluation rounds announced during inauguration.

Project Development Guidelines

- Original Work: All hardware Prototypes can start to build after the release of Problem Statements.
- Pre-built projects lead to disqualification.
- Third-Party Resources: Commercial modules allowed; custom work must be original.
- Safety: Teams responsible for safe handling of all components.

Submission & Evaluation

- Document progress via geo-tag photos, videos have to submitted on the start of the Hackathon.
- Final evaluation based on:
 - Relevance to theme
 - Functionality & technical execution
 - Innovation & novelty
 - Scalability & impact

Software Hackathon Guidelines:

Event Format & Process

- Duration: 24 hours of continuous coding.
- Problem Statements: Provided at the start.
- Evaluation Criteria:
 - Creativity & Novelty
 - Technical Execution
 - Feasibility & Functionality
 - Presentation & Documentation
- Number of evaluation rounds announced during inauguration.

Project Development Guidelines

- Original Work: All code developed during hackathon; pre-built/Al-generated solutions can be used with a minimal level (Judge's Choices).
- Third-Party Resources: Public libraries, APIs, and frameworks allowed.
- Code Ownership: Code must be authored by team members.

GitHub Repository Requirements

- Private Repository: Team Leader creates.
- Naming Format: Chakravyuha25_<Team_Name>.
- Commit Frequency: Every 2 hours.
- Rules: No pushing/pulling outside 24-hour coding period.
- Final repository link submitted for evaluation.